
 

 

  
Abstract— Reverse Engineering represents a long-term goal of 

computer science and engineering; it aims at the reconstruction of 
digital models from measured data by means of 3D mathematical 
surfaces and geometrical features representing the geometry of a 
physical part. In this paper, an overview of constrained fitting 
optimization methods specifically devised for the reconstruction of 
mechanical parts is proposed, highlighting the connections between 
the theoretical problem and some practical solutions. Furthermore, 
algorithmic procedures are provided in order to underline the main 
differences between the considered approaches. Critical aspects of 
constrained fitting and recent trends on Reverse Engineering are 
finally presented and discussed. 
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I. INTRODUCTION 
he reconstruction of digital geometric models of physical 
objects has been one of the most studied topics of the 

Computer Aided Design (CAD) field for the past 20 years. 
The interest in Reverse Engineering (RE) solutions has been 
recently strengthened as the area of potential applications has 
widened, going beyond the traditional mechanical engineering 
field (e.g. medical [1], topology optimization [2], archeology 
[3], cultural heritage [4], [5]). 

The vast majority of CAD reconstruction processes rely on 
the framework depicted in Figure 1 [6], the first step being the 
acquisition of 3D data (points, mesh) on the surfaces of the 
object to be reconstructed; occasionally, a different 
information source can be used to extract the reference data 
guiding the reconstruction of the 3D model [7]. The acquired 
data is subsequently processed, to identify and extract the 
surfaces composing an object; this phase is usually carried out 
analyzing local geometric properties of the acquired data, e.g. 
differential geometry. At the end of the processing, an 
analytical description, i.e. a digital geometric model, is 
produced.  

In mechanical applications, specifically, the whole process 
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is oriented towards the generation of a proper parametric CAD 
model.  The composing CAD features are required to be 
correct in dimensions, topology and in the existing relations 
between them.  

 

 
Figure 1 – Traditional RE framework. 
 
The reconstruction result needs to be correct with respect to 

both the retrieved topology (i.e. which CAD features compose 
the object, the geometric relations and regularities enforced) 
and the dimensional accuracy. The retrieval of the original 
design intent of a mechanical part and the practical usefulness 
of the reconstructed model highly rely on the imposition of a 
valid set of geometric constraints. The correct functioning of 
mechanical parts, in fact, often depends on geometric relations 
between functional surfaces or features (e.g. parallelism of two 
planes, orthogonality between axes, etc.) and their retrieval is 
in most cases fundamental [8]. 

 

 
Figure 2 – Constrained Fitting Framework  
 
The most pursued strategy to achieve the described goals is 

the so called constrained fitting approach [9]. This class of 
methods introduce a set of geometrical constraints that are 
defined among the identified geometric features and enforced 
by formulating a constrained optimization problem. Basic 
steps composing the typical constrained fitting approach are 
presented in Figure 2: summarizing the whole process, three 
elements are taken as input in the optimization steps: reference 
data, geometric constraints and a set of parameters (i.e. the 
optimization variables) describing the shape of the surfaces 
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constituting the final model. The definition of a coherent and 
solvable constraint set, and the implementation of an effective 
and efficient optimization routine represent one of the most 
difficult and studied aspects of the constrained fitting 
approach.  

Several contributions have been discussed in literature to 
tackle these problems, but an up-to-date survey of the 
optimization techniques implemented to solve these problems 
is still a missing point. Accordingly, the aim of the present 
paper is to address this issue, presenting an overview of the 
optimization algorithms and approaches that have been 
proposed to solve constrained fitting problems in the RE field. 
In Section II, the formalization of the constrained fitting 
problem is presented, providing insights into practical 
solutions proposed in the literature. In Section III and Section 
IV, gradient based and evolutionary optimization algorithms 
are, respectively, introduced, focusing on their application for 
constrained fitting problems. Final considerations are drawn in 
Section V.  

 

II. CONSTRAINED FITTING PROBLEM IN REVERSE ENGINEERING 

A. Formulation 
As a general starting point of the considered framework, we 

assume that a pre-segmented mesh extracted from acquired 3D 
data of an object is available [8], [10], [11]. Specifically, each 
point pij is associated to a surface si that has been previously 
detected by some specific segmentation algorithm [12], [13] ; 
the index j accounts for all the points linked to that surface. 

Since we are dealing with parametric surfaces, the i-th 
surface is completely defined by a column vector of 
parameters xi, whose elements depend on the kind of the 
considered surface and on the adopted mathematical 
description. Hence, if N is the total number of surfaces, the 
parameter vector describing all the object’s surfaces is x = 
[x1

T, x2
T,… xN

T]T , being ()T the transpose operator. 
Moreover, let’s assume that a set of constraints involving 

the elements of x are specified or automatically extracted from 
the acquired data by a suitable constraints-detecting procedure. 
Constraints play a fundamental role in the framework; more 
insights will be given below. 

The aim of the constrained fitting approach in RE is to find 
the best set of parameters x, such that i) the reconstructed 
object’s surfaces are as close as possible to the acquired data, 
ii) the constraints on parameters are satisfied. The problem of 
the constrained fitting can be formulated as  
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In (1), F(x) is namely the objective function that accounts 

for the unconstrained fitting error, that is, the discrepancies 
between the parametric surfaces and the acquired data; gk and 
ck are the k-th inequality and equality constraint, respectively, 

that involve one or more parameters, potentially belonging to 
more surfaces.  

According to the previous formulation, the constrained 
fitting for RE is a global optimization problem (as highlighted 
by the attempts at solving the problem with a local 
optimization algorithm discussed in [14]) that requires a 
balancing between the approximation and the constraint 
satisfaction. In the following subsections, a discussion on 
suitable choices for the objective function and the constraints 
is provided, considering both the RE and the mathematical 
point of view.   

B. Objective function 
The rationale behind the objective function is to measure 

how far the parametric surfaces are from the points of the 
dataset, according to some measure function. Consequently, 
the aim is to reduce such distance in order to improve the 
fidelity of the reconstructed object to the data. 

Algebraic metric has been initially adopted in the literature 
for the fitting of quadric surfaces [11]. The concept can be 
introduced by generally considering a polynomial description 
of the i-th surface:    

 
0=iijxhT , (2) 

where hij is the measurement vector whose element are 
given by monomial of coordinate of the acquired point pij. For 
instance, if pij = (x,y,z) is a point associated to plane then 
hi=[x,y,z,1]T and xi=[u,v,w,d]. In practice acquired data are 
affected by noise; thus, the right member of (2) can be 
generally substituted by an offset term εij ≠ 0.  If mi 
measurements are provided, then local algebraic fitting of the 
i-th surface is formulated as a (ordinary) least squares problem 
over all the εij; the functional to be minimized is 
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where the element of the square matrix Hi in position (l,q) is 

 

iqili hhH Tql =),( . (4) 

 
By extension, the objective function related to algebraic 

fitting of the whole object is 
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being H a diagonal block matrix containing the local fitting 

matrices ωiHi. Please note that the term ωi is an eventual 
positive weighting factor to enforce priority fitting on i-th 
surface. 

The main advantage of using (5) is given by its quadratic 
form, which is in practice strictly convex; by imposing simple 
normalization on xi to avoid trivial solutions (e.g., a2 + b2 + 
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c2= 1 in the case of a plane), this leads to an eigenvalue 
problem whose solution can be managed by efficient and 
numerically stable algorithms.  Furthermore, the system matrix 
H is sparse and can be computed only once, preferably in an 
off-line stage. Werghi [9], [15] has also given a statistical 
interpretation of algebraic fitting as the likelihood function of 
range data over the parameters if the offset term εij is modelled 
as additive Gaussian and its statistics are known, a weighted 
least squares approach can be followed by inserting 
appropriate scalar weights in (4). 

Even though algebraic fitting is appealing for its ease to be 
solved, it is not linearly related to geometrical distance 
between surfaces and points. Indeed, the term εij only accounts 
for the overall algebraic offset from 0 due to the noise 
affecting the point’s coordinates; such an offset is a function of 
the measurement vector, that is, of polynomial combinations of 
point’s coordinates. Since ordinary least squares method does 
not consider how the noise affects each coordinate, the 
solution qualitatively tends to compensate more for 
coordinates with higher polynomial degrees, even when the 
acquisition error is homogeneous for all coordinates. This 
leads to significant shape bias when considering simply curved 
surfaces [11], which cannot be acceptable for RE purposes. 

A straightforward alternative to algebraic distance is the 
Euclidean distance: 

 

∑
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)()( ii xx , (6) 

 
where si(xi) denotes that the surface depends on the 

associated parameters vector. It should be noted that Euclidean 
metric and algebraic one generally differ, being linear 
structures (lines and planes) noticeable exceptions. Form an 
operative point of view, the Euclidean distance requires to find 
the closest point on a surface for each acquired point; hence, it 
deals with geometric distances and represents a suitable 
solution for RE application. Nevertheless, (6) is generally a 
non-convex function; hence, no general closed form solution 
for the minimization of (6) is available, even for quadric 
surfaces [11]. Optimization problems dealing with non-convex 
functionals are encountered across several engineering fields 
[16], and sub-optimal solving algorithms are usually and 
possibly developed to avoid unfeasible computational costs. 
As a simple example, let’s consider the case of the Euclidean 
distance between a sphere having parameters xi = [r,x0,y0,z0]T  
(r is the sphere radius, being the remaining parameters the 
center’s coordinate) and generic points pij = (xj,yj,zj); it yields 
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The objective function in (7) is non-convex; hence, its 
constrained minimization is a non-trivial task. 

Euclidean distance has been less considered in the RE field 
due to its mathematical complexity. Some efficient 

implementations have been proposed [17], [18]; alternative 
measures have been also investigated in the literature for 
fitting purposes, such as Taubin distance [19], or for similarity 
detection, such as Haussdorf distance [20].  

In order to improve the tractability of the mathematical 
problem as well as the computational efficiency of solving 
algorithms, the concepts of faithful distances and efficient 
representation have been introduced and widely exploited in 
the RE community [8], [10], [21].  

The rationale behind the faithful distance follows from the 
fact that the exact measure of the Euclidean distance between a 
surface and a point for every reciprocal position is not strictly 
necessary, but increasing accuracy is required as they get 
closer. Hence, a distance is faithful to the Euclidean one if [8]  
i) is zero when the point is on the surface, ii) its derivative on 
the surface is unit and orthogonal to the surface. Since faithful 
distance relaxes the original metric, there exist several 
possibilities for a given scenario and the most suitable ones 
can be accordingly chosen. As to previous example, a faithful 
distance for (7) is  
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It is worthy to note that algebraic distances are commonly 

also faithful distances. 
Efficient representation involves the choice of suitable 

parameters set such that the objective function F(x) can be 
factorized as 
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where S and P are vector field of the same dimensions and  
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The above formulation can be exploited in gradient based 

methods to save the computational efforts by calculating the 
matrix M in advance. For instance, (3) and (8) are also 
examples of efficient parametrization. Further computational 
resources can be saved, if the parametrization is chosen such 
that S(x)=x, which implies the gradient and Hessian matrix of 
(9) are 2Mx and 2M, respectively. Nevertheless, this approach 
might increase the length of the parameters vector [8]. 

 

C. Constraints 
The enforcement of constraints is required to provide a 

meaningful reconstructed object at the end of the optimization 
procedure; by meaningful, we intend suitable for industrial 
purposes, possibly in accordance to the original designer’s 
intent and editable in a CAD environment. The significance of 
each mechanical part of the reconstructed model is therefore 
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strongly related to the number, the quality and the validity of 
the constraints [10], [14]. For instance, in the reconstruction of 
a cylinder, perpendicularity of the base surfaces with respect to 
the lateral one is mandatory, even at the expense of a poorer 
fitting to the acquired data (e.g., if they are strongly 
corrupted); otherwise, the reconstructed object would be 
barely useful, failing the main purpose of RE of mechanical 
parts. 

There exist two main approaches for the definition of 
constraints in the literature: automatic (or semi-automatic) 
detection [10], [21]–[23] and user defined [9], [15], [24], [25]. 
Automatic constraints recognition in RE is a very attractive 
field, because relieves the designer from a tedious and long 
task and allows less experienced users to perform the 
reconstruction process. Nevertheless, it still represents a 
challenging goal when considering very complicated objects. 

Whichever the approach to constraints detection is, the 
validation of constraints represents another key aspect in RE. 
Indeed, the probability that a human or a machine-guided 
procedure introduce redundant or contradicting constraints 
increases as the number of parts of a mechanical object grows. 
While in the former case an unnecessary complexity has to be 
faced, in the latter the reconstruction process is likely to fail or 
never converges; hence, automatic routines capable to manage 
detect and, eventually, resolve such situations are desired. 
However, a discussion of such methods is beyond the scope of 
this paper. 

Interestingly, there is no common starting point for several 
authors whether only equality constraints [8], [10], [21] or 
inequality constraints [9], [15], [23], [25] should be considered 
in the RE framework. Inequality constraints are more general, 
since equalities can be rewritten as two complementary 
inequalities. Furthermore, inequalities allow to consider 
tolerances on mechanical parts and seem more suitable from 
an engineering perspective. However, there are circumstances 
where reasonable values for tolerances cannot be easily 
determined, because constrained relations are cumbersomely 
connected to physical properties of the object (see intrinsic 
constraints below). Additionally, noticeable optimization 
routines have been devised in RE field considering equality 
constraints. Thus, for sake of completeness, both kinds of 
relations have been expressed in (1). 

Constraints can be mainly classified into two categories [9], 
[15]: intrinsic and extrinsic. Constraints belonging to the 
former class enforce geometric properties of the shape of a 
given surface. For instance, given the generic quadric surface 
equation is 
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specific conic surfaces can be enforced in the reconstruction 

process by imposing different mathematical relations on the 
parameters (please note that (10) can be rearranged in the form 

of (2)). In the case of a sphere, the constraints in (1) can be 
written as 
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where the inequality assures a non-negative radius 

(degenerate cases of plane (a=0) and point are allowed). 
Please note that introducing tolerances in the parameters of 
(12) would allow a morphing of the sphere; nevertheless, this 
approach is questionable from a reconstruction that is carried 
out following a feature-based paradigm, because we started 
assuming to look for a sphere and not for something that is like 
a sphere. Additionally, poor tolerance settings may cause 
hardly predictable geometrical results in the reconstructed 
object.  

Extrinsic constraints enforce topological and geometric 
relations between different surfaces of an object. Parallelism, 
orthogonality, relative orientations, concentricity, coaxiality, 
tangency, predetermined distances are some examples of 
features that are part of this class. For instance, orthogonality 
between two planes, namely hp1 and hp2, is given by 

 
0),,,,,( 212121222111 =++= wwvvuuwvuwvuc , (13) 

 
 
A know tolerance angle τ ≥ 0 taking into account eventual 

mechanical or production imperfections can be introduced by 
modifying (13) and considering inequality relations: 
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The equality relation in (14) assures unit norm of the 

parameters; they can be considered as intrinsic constraints and 
tolerances on them should be avoided. A substantial list of 
constraints in both 2-D and 3-D spaces is provided in [8]. 

Although common constraints can be usually described by 
linear or quadratic form, more complex mathematical 
descriptions may arise in the formulation of the RE problem. 
In order to contain the complexity burden, auxiliary objects 
can be introduced [8]. Auxiliary objects are virtual geometric 
structures, such as points, lines, planes, that are associated with 
no acquired data, but that are devised only to simplify the 
constraints formulation. A typical example is the enforcement 
of the intersection of three or more planes in a point: in this 
case it is convenient to extend x to x1=[xT , xa

T]T , introducing 
the virtual point xa=[xa,ya,za]T in the parameters, and forcing it 
to lie on each planes. Auxiliary objects are introduced at the 
expense of more mathematical relations, but they are not 
involved in the computation of the objective function. 
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Finally, it is worth to note that the analytical expression of 
constraints plays an important role in the classification of the 
minimization problem (1) and, consequently, in its solvability. 
This aspect is particularly crucial for optimization procedures 
based on gradient methods.  

III. GRADIENT BASED OPTIMIZATION ALGORITHMS 
The study of optimization techniques based on gradient-

based methods is a long-term topic. In this paper, we focus on 
two main gradient based optimization techniques for 
constrained fitting in RE field: sequential unconstrained 
minimization [9] and sequential constraints satisfactions [8]. 
Even though other remarkable study on RE have been 
presented more recently, they still represent state-of-art in the 
field. They require that both the objective function and the 
constraints relations are continuously differentiable. Moreover, 
they solve local optimization problems; if a non-convex 
minimization problem is considered in (1), these methods may 
only converge to a local minimum of F(x). 

A. Sequential unconstrained minimization 
In sequential unconstrained minimization, only quadric 

surfaces and constraints are managed. Specifically, the 
objective function is strictly convex and is on the form of (5), 
where positive definiteness of the system matrix H is enforced 
by both its dependence of acquired data and its construction by 
means of (3) and (4). As to the constraints, they are generally 
considered by inequalities of the form 
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T
k Mkcg =≤++= bxAxxx  (15) 

 
where A is not generally positive definite or positive 

semidefinite. Inequality (15) would generally induce a non-
convex problem. Hence, the modified version (16) is used in 
(1) to assure convexity: 
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By eventually assuming that all gk have linearly independent 

gradient, it is known that (1) is a convex optimization problem 
and it satisfies the Karun-Kush-Tucker conditions [26]; hence, 
its unique solution exists and it is also the unique solution of 
the unconstrained problem (17) for an optimal positive weight 
vector λ=[λ1,…,λMi]T: 
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Since (17) is a convex and continuously differentiable 
problem, equating its gradient (with respect to both x and λ) to 
zero theoretically suffices to compute the optimal set of 
parameters x. Unfortunately, this approach is convenient only 
when further assumptions on the mathematical structure yield 
to a closed form solution of (17). In the general case, the 
values of λ are unknown and numerical routines must be used. 

Sequential unconstrained minimization is an iterative 
routine that exploits the convergence of (17) towards the same 
solution of (1) for increasing values of λ. The idea is the 
following: at the m-th step, elements of λ(m) are increased from 
their previous values λ(m-1) and are substituted in (17), in order 
to obtain an unconstrained minimization convex problem; then 
it is solved with respect to x(m) starting from the previous 
iteration’s value x(m-1). The procedure is repeated until all 
constraints are satisfied. The algorithmic structure is provided 
below: 

 
1. Initialize λ = λ(0) and x  = x(0) 
2. While ∃ k such that 0)( >xkg do 

a. λ = Update(λ)   

b. Set e(·)= ∑
=

λ+
iM

k
kk gF

1
)()( ··  

c. x = LMsolver[e(·), x] 
3. End While 

  
At step 1, x(0) is computed by merging the solutions of the 

unconstrained fitting problems (3) for each surface, 
considering only intrinsic constraints (e.g.: normalization 
constraints, positive radius). Then the k-th element of λ(0) is 
obtained according to ( ) )(/ )0()0( xx kk gF=λ , in order to 

avoid the trivial zero vector solution. The initialization of the 
parameter vector is key point to guarantee the convergence of 
the algorithm as well as to minimize the number of iterations.  

After the updating of elements of λ, which is usually carried 
out by simply adding positive constants, the solution x is 
updated at step 2c by minimizing e(x) according to a 
Levenberg-Marquardt routine [27]. Specifically, LMsolver 
requires the error function e(·) and the starting point x as well 
two positive quantities that determine the optimization 
behavior, that is, the initial step s0 and the on the tolerance εth. 
In the following, the sketch of the LMSolver is reported (I is 
the identity matrix): 

 
1. Initialize s=s0, ε = ∞ 
2. While ε > εth  

a. Set ε0= e(x) 
b. Compute G = gradient[e(x)] 
c. Compute H = Hessian[e(x)] 
d. Compute Hm = H + sI 
e. Solve Hm Δx = -G w.r.t. Δx 
f.     εnew = e(x+Δx) 
g. If εnew < ε 

i. Set x = x+Δx, ε = εnew 
ii. s = Decrease(s) 

h.     Else 
i. s = Increase(s) 

ii. Go to point 2d 
i. End If 

3. End While 
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It has to be pointed out that several variants of such 

algorithm exist, considering different stopping conditions of 
Hessian update. Furthermore, the efficiency is strongly related 
on the implementation of Decrease() and Increase() functions, 
as well as on the quantity checked at step 2e. Optimal settings 
in such sense are strongly dependent on the scale of error 
function e(·). Werghi has also discussed a numerical instability 
issue of Levenberg-Marquardt algorithm related on the update 
of λ, proposing a variant of LMSolver to overcome the 
problem. For sake of space it has been omitted; the interested 
reader can refer to [9]. 

B.  Sequential constraints satisfactions 
Sequential constraints satisfaction is an iterative constrained 

fitting optimization routine that manages only equality 
constraints. At each step of the procedure, the validity of the 
constraints is checked according to specified priorities and the 
unfeasible ones are discarded; furthermore, efficient 
exploration of the solution space is performed by using a 
minimum set of independent parameters. In the original paper 
[8], a quadratic objective function has been used, since faithful 
and efficient representations of the surfaces are adopted. Even 
though this assumption reduces the computational burden, is 
not generally required for the validity of the method.  

The constrained fitting problem in (1) is firstly 
approximated and reduced to a compact form. We start by 
considering an approximate version  
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where the objective function and the equality constraints 
have been replaced by their second order and first order Taylor 
expansions, respectively. In (18) we indicate Δx=(x - x ); the 
gradient and the Hessian matrix of the objective function F as 
F′ and F ′′ , respectively; moreover, we compact the notation 
constraints by means of vector c and matrix c′ , that represent 
the Me equality constraints functions and their derivatives 
w.r.t. x, respectively. Without loss of generality, let’s assume 
that the constraint set is ordered according to some given 
priority scheme, being the most important at the top of vector 
c . The problem can be finally rewritten by further compacting 
the notation, defining  
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where d has length Nd. Substituting (19) in (18), yields  
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The iterative procedure is the following: at the m-th step, the 

quantities in (19) are computed assuming x = x(m-1); then a new 
value of the extended vector d(m) is obtained by solving (20); 
finally, the new parameter vector is computed by backward 
substitution of the first relation in (19), i.e., x(m)= x +x(m). The 
procedure is repeated until some optimality tolerance is 
satisfied. 

The solving procedure for (20) is divided in two phases: 
dimensionality reduction and unconstrained minimization. The 
former step aims at extracting a minimum set of independent 
parameters that satisfy the constraints by means of a Gaussian-
elimination-like procedure. Starting from the first row of C 
(which corresponds to the highest priority constraint) the 
coefficient cl having the highest absolute value is selected, 
being l its position in the row. We firstly observe that by 
construction of C necessarily follows that 
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Thus, we rewrite d as 
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being M1 and d1 given in (23). Please note that now both the 
number of columns of the former and the number of rows of 
the latter are (Nd-1). 
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Equation (22) can be plugged in the equality constraints of 
(20), yielding 

 
( ) 0dCMCd 11 == , (24) 

 
Next, the dimensionality reduction process can be iterated 

starting from the second row of ( )1CM and so on, until a 
minimum dimensional vector d* is obtained as in (25): 
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j
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The equality in the above relation strictly holds when all the 

constraints are linearly independent and not contradicting. A 
key feature of the algorithm is that eventual exceptions are 
detected during the dimensionality reduction process. If a row 
is linearly dependent from the previous ones, it will end to 
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have all null entries at its turn. In this case the procedure jumps 
to the next row, discarding the constraint. On the contrary, if a 
constraint contradicts some of the previous ones, its 
corresponding row will end to have null entries except the last; 
thus, the procedure can be either halted or the fault constraint 
can be discarded, continuing to the next row. 

The unconstrained minimization phase is eventually carried 
out at the end of the dimensionality reduction process. By 
plugging (25) into the objective function of (20), a classical 
eigenvalue problem is obtained w.r.t. d*: 

 

( ) *

j
j

j
j

* dMAMdminimize













∏∏
==

K

K

TT

1

1 . (26) 

 
The problem in (26) can be efficiently solved by 

consolidated numerical routines. Furthermore, computational 
and memory resources can be saved in the processing of the 
system matrix by considering that Mj is sparse. It should be 
noted that trivial solutions of (26) are avoided because the last 
element of d* is unit.  

The overall procedure is summarized in the following. We 
consider a stopping threshold on the absolute change of x for 
sake of synthesis. As to the initialization vector x0, it can be 
obtained by unconstrained fitting of each single surface [8]. 

 
1. Initialize 0xx = , ε = ∞ 
2. While ε > εth 

a. Compute the quantities in (19) 
b. Compute (M1… MK) by dimensionality 

reduction applied on C 
c. Compute d* by solving (26)  
d. Compute d by means of (25) 
e. Extract Δx from d according to (19) 
f.     Δxxx +=  
g. ε = | Δx | 

3. End While. 

IV. EVOLUTIONARY OPTIMIZATION ALGORITHMS 
Optimization by means of evolutionary strategies relies on 

iterative exploration of the solution space by means of random 
editing (mutations) of previously explored parameters vectors 
(population). Evolutionary algorithms for constrained fitting in 
the RE field have been proposed by Robertson et al. [25], [28]; 
their approach is discussed here.  

According to the problem statement in (1), an overall 
parametrization x of surfaces extracted from a noisy 3-D 
dataset is assumed (the RANSAC algorithm for extraction of 
primitives [29], [30] has been adopted in the original paper). 
The objective function is based on the Euclidean distance and 
it is defined as 

 

∑ −=
=n

in
Ni

spF 2
,,1

)(min)( ixx


 (27) 

 

where the index n runs on all the points dataset. Noticeably, 
(27) is not convex in general nor requires a fixed association 
between each point and a surface. As to the constraints set, it is 
divided in three groups: linear constraints (both equalities and 
inequalities), nonlinear equalities and nonlinear inequalities, 
namely {L}, {Ne} and {Ni}, in that order. 

The procedure is based on the GENOCOP III algorithm, 
which, in turn, is based on GENOCOP I algorithm [31]. For 
sake of space, only an outline of the GENOCOP III processing 
is reported here. In GENOCOP III, two populations R and T 
are considered: the former, namely reference, contains only 
parameters vectors that satisfy all the constraints (fully 
feasible); the latter, search, contains vectors parameters that 
satisfy {L} but not necessarily {Ne} and {Ni}. 

 At each step, the GENOCOP I algorithm runs over T 
starting from the best value of the previous iteration x(m-1), 
generating a new population T whose elements satisfy 
necessarily {L}. Then, for each element t of T that does not 
fulfil {Ne} or {Ni} a new element z is randomly generated  

 
)r(tz aa −+= 1  (28) 

 
where a is a uniformly distributed random number in (0,1) 

and r is an element of R. Equation (28) is repeatedly applied 
until z is fully feasible. Then r is replaced in R by z, whereas t 
is replaced in T by z only with some specified probability. At 
the end of the step, the best value x(m) is obtained by evaluating 
the objective function on all the elements of T and the feasible 
elements of R. 

According to the described procedure, the evolutionary 
exploration of the space is carried out by the GENOCOP I 
algorithm at the beginning of each step; however, since it can 
handle only linear constraints, the subsequent steps of 
GENOCOP III are necessary to generate new fully feasible 
parameters for the problem in (1). 

An appealing feature of GENOCOP III is that a fully 
feasible solution is provided at the end of each step, which is 
not the case of the previous GENOCOP II algorithm [32]. 
However, initial fully feasible guesses must be provided, 
whereas this has not required in GENOCOP II. 

V. DISCUSSION 
In this paper, the constrained fitting problem for RE 

engineering of mechanical parts has been formalized and 
discussed. Furthermore, state-of-art techniques devised to 
solve the problem have been revised, by focusing on the 
algorithmic structure. The main distinction between two 
gradient based approaches and an evolutionary one has been 
drawn not only to distinguish different philosophy solving 
algorithms, but also because some important practical 
considerations can be stated. 

Firstly, the number of RE methods that rely on gradient 
based optimization is greater than those ones adopting 
evolutionary algorithm. A possible explanation has been given 
in [9]: “We believe that the evolutionary techniques are 
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suitable mainly to the optimization cases where objective 
functions and constraints are very complex, presenting hard-
handled aspects such nonlinearity, non-differentiability, or do 
have not explicit forms. Indeed, the earlier mentioned 
characteristics of these techniques allow them to by-pass these 
problems. As our optimization problem does not have these 
problems, the operational research techniques are more 
appropriate”. Nevertheless, to the best of our knowledge, no 
remarkable work on gradient based optimization implementing 
the Euclidean distance in 3-D space for has been proposed in 
the RE field. This aspect may be crucial when considering RE 
of complex objects starting with low quality data, due to the 
bias issue discussed in Section II. Moreover, convexity of 
gradient based methods is also guaranteed by prior points 
classification, which implicitly relies on a good association of 
each point with one object’s surface. Non-convex objective 
functions, such as (27), seem more appropriate when this is not 
the case. 

Among the class of gradient optimization, sequential 
unconstrained minimization represents the first remarkable 
work. It has been subsequently exploited in a feature-based 
solid model reconstruction technique working on 2-D contours 
[23]. A very similar approach has been used for the 
decomposition of complex RE problems [22]. In [21], it has 
been extended to handle B-spline for the reconstruction of 3-D 
surfaces from 2-D sectional curves. Remarkably, the authors of 
[21] also affirm that sequential unconstrained minimization has 
been preferred to sequential constraints satisfaction due its 
superior robust convergence performance.  

Sequential constraints satisfaction overcomes some 
important limitations of sequential unconstrained 
minimization, such as managing of quadric surfaces, complex 
constraints formulation, requirement of constraints feasibility 
and independence. It has been successfully adopted in 
noticeable RE solutions, such as reconstruction of 
topologically consistent B-REP models [33], automatic 
recognition of surface constraints [10], as well as for 
beautification process [34]–[36]. This last class of approaches 
firstly performs an independent fitting of surfaces and 
subsequently enforces geometric relations; any deviation 
analysis w.r.t. the reference data is in this case omitted, as the 
only input considered for the imposition of constraints are the 
previously-fitted surfaces. The decoupling of reference data 
and constraints allows for a more efficient formulation of the 
reconstruction problem, but also imposes a simplification that 
has consequences on the quality of the obtained result.  

Evolutionary algorithms have been widely considered in 
several scientific problems due to their specific attractive 
features: i) no requirement on convexity (global optimization), 
ii) no requirement on continuity or differentiability, iii) easy 
implementations, iiii) they often succeed in practical 
applications where other methods (e.g., gradient-based 
optimization) cannot be applied. On the other side, 
convergence properties are theoretically demonstrated for few 
simple cases; moreover, routines might be very resource 

demanding.  For the interested reader, Fayolle and Pasko [37] 
have considered an evolutionary approach for the related 
problem of reconstructing the feature tree starting from 
primitives unconstrainedly fitted on an acquired 3-D dataset. 

Constrained fitting represents, in general, a valid approach 
to tackle the reconstruction of mechanical parts and to 
consider significant geometric constraints in the final result; 
several variations of the basic approach have been proposed in 
the scientific literature and also implemented, to some degree, 
in most advanced reverse engineering software packages (e.g. 
[38]).  

While the models generated with this class of approaches 
can better represent the original design intent of the designer, 
it must be underlined that constrained fitting aims at 
reconstructing the geometrical information of an object; it 
therefore represents only a part of the entire RE process. By 
considering recent trends in the field, several efforts have been 
spent to devise new techniques for both solid features 
recognition and topology reconstruction. Indeed, topological 
consistency of the reconstructed object is a fundamental 
feature to grant subsequent editability by a CAD user. The 
retrieval of a complete modelling history, provided with 
associativity relations, defining a parametric representation for 
the reconstructed CAD model, is still an open issue in the RE 
field. Additionally, a parametric representation compatible 
with at least one major renowned CAD/CAE software package 
is the result desired by reverse engineers; 

 It must be noted that the retrieval of an object’s modeling 
history is a problem characterized by more than one solution, 
even in most simple cases. As an example, the modeling of a 
solid cylinder could be achieved by using one of the following 
procedures: i) a revolution function (revolving a segment 
parallel to the revolution axis), ii) an extrusion of a circle or 
iii) a loft operation with a segment as guide curve and a circle 
as section. In this example, each representation is equally valid 
if additional context is not provided. A CAD user could prefer 
depending on his/her needs, the application, and possible 
modifications that need to be executed on the model, one 
solution over the others.  

Up to this date the only viable option to assure a satisfying 
result is to rely on a user-guided reconstruction framework 
carried out within a dedicated software (e.g. Geomagic Design 
X, Polyworks). Such systems are provided with a parametric 
modeling environment that allows the user to select the 
preferred reverse modeling strategy. Recently, a novel 
reconstruction strategy, inspired by the constrained fitting 
approach, has been proposed in [39]; it aims at the 
reconstruction of parametric CAD models defined by a 
suitable associative modelling history. The authors are 
currently studying a possible solution based on the proposed 
reconstruction paradigm that will be hopefully discussed in a 
future publication.  

 
 

INTERNATIONAL JOURNAL OF MECHANICS Volume 11, 2017

ISSN: 1998-4448 195



 

 

REFERENCES   
 
[1] E. Solaberrieta, R. Minguez, L. Barrenetxea, E. Sierra, and O. 

Etxaniz, “Computer-aided dental prostheses construction using 
reverse engineering,” Computer Methods in Biomechanics and 
Biomedical Engineering, vol. 17, no. 12, pp. 1335–1346, Sep. 
2014. 

[2] P.-T. DOUTRE et al., “Comparison of some approaches to define a 
CAD model from topological optimization in design for additive 
manufacturing,” 2017, pp. 233–240. 

[3] A. Arles, P. Clerc, G. Sarah, G. Bonnamour, J. Heckes, and A. 
Klein, “3D reconstruction and modeling of subterranean landscapes 
in collaborative mining archeology projects: techniques, 
applications and experiences,” International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information 
Sciences, Volume XL-5/W2, 2013 XXIV International CIPA 
Symposium, 2013. 

[4] R. Furferi, L. Governi, Y. Volpe, L. Puggelli, N. Vanni, and M. 
Carfagni, “From 2D to 2.5D i.e. from painting to tactile model,” 
Graphical Models, vol. 76, no. 6, pp. 706–723, Nov. 2014. 

[5] Y. Volpe, R. Furferi, L. Governi, and G. Tennirelli, “Computer-
based methodologies for semi-automatic 3D model generation from 
paintings,” International Journal of Computer Aided Engineering 
and Technology, vol. 6, no. 1, p. 88, 2014. 

[6] T. Várady, R. R. Martin, and J. Cox, “Reverse engineering of 
geometric models—an introduction,” Computer-Aided Design, vol. 
29, no. 4, pp. 255–268, 1997. 

[7] L. Governi, R. Furferi, M. Palai, and Y. Volpe, “3D geometry 
reconstruction from orthographic views: A method based on 3D 
image processing and data fitting,” Computers in Industry, vol. 64, 
no. 9, pp. 1290–1300, Dec. 2013. 

[8] P. Benko, G. Kós, T. Várady, L. Andor, and R. Martin, 
“Constrained fitting in reverse engineering,” Computer Aided 
Geometric Design, vol. 19, no. 3, pp. 173–205, 2002. 

[9] N. Werghi, R. Fisher, C. Robertson, and A. Ashbrook, “Object 
reconstruction by incorporating geometric constraints in reverse 
engineering,” CAD Computer Aided Design, vol. 31, no. 6, pp. 
363–399, 1999. 

[10] I. Kovács, T. Várady, and P. Salvi, “Applying geometric constraints 
for perfecting CAD models in reverse engineering,” Graphical 
Models, vol. 82, pp. 44–57, 2015. 

[11] R. B. Fisher, “Applying knowledge to reverse engineering 
problems,” Computer-Aided Design, vol. 36, no. 6, pp. 501–510, 
May 2004. 

[12] L. Di Angelo and P. Di Stefano, “Geometric segmentation of 3D 
scanned surfaces,” Computer-Aided Design, vol. 62, pp. 44–56, 
2014. 

[13] A. Shamir, “A survey on mesh segmentation techniques,” Computer 
Graphics Forum, vol. 27, no. 6, pp. 1539–1556, 2008. 

[14] A. I. Protopsaltis and I. Fudos, “A feature-based approach to re-
engineering CAD models from cross sections,” Computer-Aided 
Design and Applications, vol. 7, no. 5, pp. 739–757, 2010. 

[15] N. Werghi, R. Fisher, A. Ashbrook, and C. Robertson, “Shape 
reconstruction incorporating multiple nonlinear geometric 
constraints,” Constraints, vol. 7, no. 2, pp. 117–149, 2002. 

[16] A. Lapini, F. Argenti, A. Piva, and L. Bencini, “Comparison of 
super-resolution methods for quality enhancement of digital 
biomedical images,” in 2014 8th International Symposium on 
Medical Information and Communication Technology (ISMICT), 
2014, pp. 1–5. 

[17] P. Faber and R. B. Fisher, “Euclidean Fitting Revisited,” Springer, 
Berlin, Heidelberg, 2001, pp. 165–175. 

[18] P. Faber, P. Faber, and B. Fisher, “A Buyer’s Guide to Euclidean 
Elliptical Cylindrical and Conical Surface Fitting,”  PROC. 
BRITISH MACHINE VISION CONFERENCE BMVC01, pp. 521--
530, 2001. 

[19] G. Taubin and Gabriel, “Estimation of planar curves, surfaces, and 
nonplanar space curves defined by implicit equations with 
applications to edge and range image segmentation,” IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 
13, no. 11, pp. 1115–1138, 1991. 

[20] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, 

“Comparing images using the Hausdorff distance,” IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 
15, no. 9, pp. 850–863, 1993. 

[21] Y. Ke, S. Fan, W. Zhu, A. Li, F. Liu, and X. Shi, “Feature-based 
reverse modeling strategies,” CAD Computer Aided Design, vol. 38, 
no. 5, pp. 485–506, 2006. 

[22] A. Karniel, Y. Belsky, and Y. Reich, “Decomposing the problem of 
constrained surface fitting in reverse engineering,” CAD Computer 
Aided Design, vol. 37, no. 4, pp. 399–417, 2005. 

[23] J. Wang, D. Gu, Z. Gao, Z. Yu, C. Tan, and L. Zhou, “Feature-
Based Solid Model Reconstruction,” Journal of Computing and 
Information Science in Engineering, vol. 13, no. 1, p. 11004, 2013. 

[24] R. B. Fisher, “Applying knowledge to reverse engineering 
problems,” Proceedings - Geometric Modeling and Processing: 
Theory and Applications, GMP 2002, vol. 36, pp. 149–155, 2002. 

[25] C. Robertson, R. Fisher, N. Werghi, and A. P. Ashbrook, “Fitting of 
constrained feature models to poor 3d data,” Evolutionary Design 
and Manufacture, pp. 149–160, 2000. 

[26] A. W. Kuhn, H. W.; Tucker, “Nonlinear Programming,” in 
Proceedings of the Second Berkeley Symposium on Mathematical 
Statistics and Probability, 1950, pp. 481–492. 

[27] D. W. Marquardt, “An Algorithm for Least-Squares Estimation of 
Nonlinear Parameters,” Journal of the Society for Industrial and 
Applied Mathematics, vol. 11, no. 2, pp. 431–441, Jun. 1963. 

[28] C. Robertson, R. B. Fisher, D. Corne, N. Werghi, and A. Ashbrook, 
“Investigating Evolutionary Optimisation of Constrained Functions 
to Capture Shape Descriptions from Range Data,” in Advances in 
Soft Computing, London: Springer London, 1999, pp. 455–466. 

[29] M. A. Fischler and R. C. Bolles, “Random sample consensus: a 
paradigm for model fitting with applications to image analysis and 
automated cartography,” Communications of the ACM, vol. 24, no. 
6, pp. 381–395, Jun. 1981. 

[30] R. Schnabel, R. Wahl, and R. Klein, “Efficient RANSAC for point-
cloud shape detection,” Computer Graphics Forum, vol. 26, no. 2, 
pp. 214–226, 2007. 

[31] Z. Michalewicz, Genetic algorithms + data structures = evolution 
programs, vol. 24, no. 3. Springer-Verlag, 1997. 

[32] Z. Michalewicz and G. Nazhiyath, “Genocop III: a co-evolutionary 
algorithm for numerical optimization problems with nonlinear 
constraints,” in Proceedings of 1995 IEEE International 
Conference on Evolutionary Computation, 1995, vol. 2, pp. 647–
651. 

[33] P. Benko, R. R. Martin, and T. Várady, “Algorithms for reverse 
engineering boundary representation models,” CAD Computer 
Aided Design, vol. 33, no. 11, pp. 839–851, 2001. 

[34] F. C. Langbein, A. D. Marshall, and R. R. Martin, “Choosing 
consistent constraints for beautification of reverse engineered 
geometric models,” Computer-Aided Design, vol. 36, no. 3, pp. 
261–278, 2004. 

[35] M. Li, F. C. Langbein, and R. R. Martin, “Detecting design intent 
in approximate CAD models using symmetry,” CAD Computer 
Aided Design, vol. 42, no. 3, pp. 183–201, 2010. 

[36] M. Li, F. C. Langbein, and R. R. Martin, “Detecting approximate 
symmetries of discrete point subsets,” Computer-Aided Design, vol. 
40, no. 1, pp. 76–93, Jan. 2008. 

[37] P.-A. Fayolle and A. Pasko, “An evolutionary approach to the 
extraction of object construction trees from 3D point clouds,” 
Computer-Aided Design, vol. 74, pp. 1–17, May 2016. 

[38] 3D Systems, “Geomagic Design X (formerly Rapidform XOR),” 
2016. [Online]. Available: 
http://www.rapidform.com/products/xor/overview/. [Accessed: 29-
Sep-2016]. 

[39] F. Buonamici and M. Carfagni, “Reverse Engineering of 
Mechanical Parts: A Brief Overview of Existing Approaches and 
Possible New Strategies,” in ASME 2016 International Design 
Engineering Technical Conferences and Computers and 
Information in Engineering Conference, 2016, p. V01BT02A003. 
 

 
 

INTERNATIONAL JOURNAL OF MECHANICS Volume 11, 2017

ISSN: 1998-4448 196




